Регулируемый бп на tl494. ИБП ПК для радиолюбительских целей на TL494 со стабилизацией напряжения и тока


Автомобильный преобразователь на TL494 для усилителя НЧ, схема которого приведена ниже, преобразует бортовое напряжение +12В в двухполярное +-35В. На самом деле выходное напряжение зависит от параметров трансформатора.

Номиналы элементов и параметры трансформатора, которые будут указаны ниже, рассчитывались для мощности в 150Вт, что позволяет запитать усилитель НЧ на или на . Я же запитал данным преобразователем один канал TDA7293, поэтому мощности преобразователя в 150Вт мне было достаточным.

Схема автомобильного преобразователя на TL494 для усилителя НЧ


Схема преобразования двухтактная. Применяется такая схема в основном в повышающих преобразователях. Дефицитных компонентов в ней нет, за исключением диодов Шоттки КД213, в своем городе я их не нашел. Поставил импульсные диоды FR607, но они слабые, на 6 ампер. Еще один минус этих диодов, у них нет охлаждения, как у сборок. Для одного канала TDA7293 или TDA7294 диодов FR607 в принципе хватает.

Мозгом нашего автомобильного преобразователя является ШИМ контроллер TL494. Я использую китайские TL494, работают они у меня без нареканий. Есть вариант сэкономить немного денег и выдернуть ШИМ из старого блока питания ПК, очень часто они построены на TL494. Параметры и характеристики контроллера можете прочесть в .

Список Элементов.

ОБОЗНАЧЕНИЕ ТИП НОМИНАЛ КОЛИЧЕСТВО КОММЕНТАРИЙ
ШИМ контроллер TL494 1
VT1,VT2 Биполярный транзистор BC557 2
VT3,VT4 MOSFET-транзистор IRFZ44N 2
VD3-VD6 Диод Шоттки КД213 4 FR607 и мощнее
VD1,VD2 Выпрямительный диод 1n4148 2
R1 Резистор 2Вт 18кОм 1
C1 Электролит 47мкФ 16В 1
С2,С11,С12 Конденсатор неполярный 0.1 мкф 3 Керамика любое напряж.
С3 Электролит 470 мкФ 16В 1
C4 Конденсатор неполярный 1нФ 1 Керамика любое напряж.
C5,С6 Электролит 2200 мкФ 16В 2
C7,С8 Конденсатор неполярный 0,01 мкФ 2 Керамика любое напряж.
C9,С10 Электролит 2200мкФ 50В 2
R1 Резистор 1 кОм 0.25Вт 1
R2 Резистор 4.7 кОм 0.25Вт 1
R3 Резистор 11 кОм 0.25Вт 1
R4 Резистор 56 Ом 2Вт 1
R5,R6 Резистор 22 Ом 0.25Вт 2
R7,R8 Резистор 820 Ом 0.25Вт 2
R9,R10 Резистор 22 Ом 2Вт 2
F1 Предохранитель 15А 1

Частота ШИМ задается элементами C4,R3. С помощью этого вы сможете рассчитать приближенную частоту. На выходах она делится на два, но трансформатор работает именно на той частоте, которую мы рассчитываем и задаем.

Изначально я рассчитывал ШИМ и трансформатор под частоту 50кГц (С4-1нф, R3-22кОм), но видимо марка сердечника трансформатора, фактически отличалась от заявленной марки продавцом, плюс погрешности в расчете. В итоге, количество витков первичной обмотки было недостаточным, вследствие чего, в обмотке протекал очень большой ток холостого хода, ключи ужасно грелись, и был слышен писк. Пришлось повысить частоту до 100 кГц, симптомы болезни исчезли.

Если у вас случится подобная ситуация с неточным расчетом, то необходимо увеличить, либо уменьшить частоту элементами C4,R3. Если на холостом ходу горячие ключи и горячий трансформатор, то следует повысить частоту, либо добавить витки в первичной обмотке. Совсем забыл, это если во вторичке нет короткого замыкания и нет ошибок в выходном выпрямителе, а то если есть КЗ на выходе, то естественно все будет греться и сгорит, так как в данной схеме нет защиты от КЗ.

Если на холостом ходу ничего не греется, а при нагрузке происходит чрезмерное выделение тепла в трансформаторе, значит нужно понизить частоту элементами C4,R3, либо уменьшить количество витков первичной обмотки.

Расчет и намотка трансформатора автомобильного преобразователя.

Теперь приступим к самой увлекательной части, намотке трансформатора!

Габариты моего кольцевого сердечника 40мм-25мм-11мм, марка 2000МН.


Скачиваем и запускаем программу .

Схему преобразования выбираем Пуш-пул, схема выпрямления двухполярная со средней точкой, тип контроллера TL494, частоту ставьте 50-100 кГц, в зависимости от частотозадающих элементов C4,R3, далее выбираем нужное нам на выходе и на входе напряжения, выбираем также диаметр провода.


Пару слов скажу про напряжение. При расчете я указал входное напряжение 10В-11В-13В, а после того как собрал преобразователь, при испытаниях замерил напряжение на клеммах аккумулятора 13,5 Вольт, в итоге на выходе получил не +-35В а +-46В на холостом ходу. Поэтому номинальное ставьте не 11В, а 13,5В. Минимальное и максимальное соответственно 11В и 14,5В.

В ходе расчета, я получил количество витков первичной обмотки 5+5, провод диаметра 0.85мм сложенный в пять жил. И как же это понять, спросите меня вы! Но тут ничего сложного, итак, приступим…

Мотаем первичную обмотку.

Сначала, обмотаем наше колечко диэлектриком.


Все обмотки будем мотать в одну сторону, в какую, выбирать вам. Единственное правило, в одну сторону!

Мотаем одним куском проволоки 5 витков. Берем еще кусок проволоки, и виток к витку мотаем еще 5 витков, и так далее виточек к виточку, пока не получим 5 витков в 10 жил (5+5 жил).





Кладем изоляцию на первичную обмотку.




Сразу зачищаем хвосты, скручиваем и усаживаем в термоусадку.





Все, первичная обмотка у нас готова.

Объясню, что мы получили. Нам нужна первичная обмотка, имеющая 10 витков в 5 жил с отводом от середины (5+5 витков). Мы могли намотать так, сначала мотаем 5 витков 5 жилами, распределенными равномерно по всему кольцу, далее делаем отвод, кладем изоляцию, и сверху еще 5 витков 5 жилами. Получим тоже самое 5+5 витков проводом в 5 жил., ну или 10 витков с отводом от середины, кому как нравится называть. Минус данного способа в том, что обмотки могут быть не одинаковыми, а это плохо, так же чем больше слоев у трансформатора, тем ниже его КПД.

Поэтому, мы мотали сразу 10 жилами 5 витков, далее разделили, и получили две одинаковых обмотки имеющих по 5 витков из 5 жил. Давайте разберемся, как соединить данные обмотки. Тут ничего сложного, начало одной обмотки соединяем с концом другой. Главное не перепутать, и не соединить начало одной обмотки с её же концом.)))))

Каждому радиолюбителю, ремонтнику или просто мастеру необходим источник питания, чтобы питать свои схемы, тестировать их при помощи блока питания, либо же просто иногда необходимо зарядить аккумулятор. Случилось так, что и я увлекся этой темой некоторое время назад и мне так же стал необходим подобный девайс. Как обычно, по этому вопросу было перелопачено много страниц в интернете, следил за многими темами на форумах, но точно того, что было нужно мне в моем представлении не было нигде - тогда было решено все сделать самому, собрав всю необходимую информацию по частям. Таким образом родился на свет импульсный лабораторный блок питания на микросхеме TL494.

Что особенного – да вроде мало чего, но я поясню – переделывать родной блок питания компьютера все на той же печатной плате мне кажется не совсем по фен-шую, да и не красиво. С корпусом та же история – дырявая железяка просто не смотрится, хотя если есть фанаты такого стиля, ничего против не имею. Поэтому в основе данной конструкции лежат лишь основные детали от родного компьютерного блока питания, а вот печатная плата (точнее печатные платы – их на самом деле три) сделана уже отдельно и специально под корпус. Корпус здесь состоит также из двух частей – само собой основа корпус Kradex Z4A, а так же вентилятор (кулер), который вы можете видеть на фото. Он является как бы продолжением корпуса, но обо всем по порядку.

Схема блока питания:

Список деталей вы можете увидеть в конце статьи. А теперь коротко разберем схему импульсного лабораторного блока питания. Схема работает на микросхеме TL494, существует много аналогов, однако рекомендую все же использовать оригинальные микросхемы, стоят они совсем недорого, а работают надежно в отличие от китайских аналогов и подделок. Можно также разобрать несколько старых блоков питания от компьютеров и насобирать необходимых деталей от туда, но я рекомендую по возможности использовать все же новые детали и микросхемы – это повысит шанс на успех, так сказать. По причине того, что выходная мощность встроенных ключевых элементов TL494 не достаточная, чтобы управлять мощными транзисторами, работающих на основной импульсный трансформатор Tr2, строится схема управления силовыми транзисторами T3 и T4 с применением управляющего трансформатора Tr1. Данный трансформатор управления использован от старого блока питания компьютера без внесения изменений в состав обмоток. Трансформатор управления Tr1 раскачивается транзисторами T1 и T2.


Сигналы управляющего трансформатора через диоды D8 и D9 поступают на базы силовых транзисторов. Транзисторы T3 и T4 используются биполярные марки MJE13009, можно использовать транзисторы на меньший ток – MJE13007, но здесь все же лучше оставить на больший ток, чтобы повысить надежность и мощность схемы, хотя от короткого замыкания в высоковольтных цепях схемы это не спасет. Далее эти транзисторы раскачивают трансформатор Tr2, который преобразует выпрямленное напряжение 310 вольт от диодного моста VDS1 в необходимое нам (в данном случае 30 – 31 вольт). Данные по перемотке (или намотке с нуля) трансформатора чуть позже. Выходное напряжение снимается с вторичных обмоток этого трансформатора, к которым подключается выпрямитель и ряд фильтров, чтобы напряжение было максимально без пульсаций. Выпрямитель необходимо использовать на диодах Шоттки, чтобы минимизировать потери при выпрямлении и исключить большой нагрев этого элемента, по схеме используется сдвоенный диод Шоттки D15. Здесь также чем больше допустимый ток диодов, тем лучше. При неосторожности при первых запусках схемы большая вероятность испортить эти диоды и силовые транзисторы T3 и T4. В выходных фильтрах схемы стоит использовать электролитические конденсаторы с низким ЭПС (Low ESR). Дроссели L5 и L6 были использованы от старых блоков питания компьютеров (хотя как старых – просто неисправных, но достаточно новых и мощных, кажется 550 Вт). L6 использован без изменения обмотки, представляет собой цилиндр с десятком или около того витков толстого медного провода. L5 необходимо перемотать, так как в компьютере используется несколько уровней напряжения – нам нужно только одно напряжение, которое мы будем регулировать.


L5 представляет собой кольцо желтого цвета (не всякое кольцо пойдет, так как могут применяться ферриты с разными характеристиками, нам нужно именно желтого цвета). На это кольцо нужно намотать примерно 50 витков медного провода диаметром 1,5 мм. Резистор R34 гасящий – он разряжает конденсаторы, чтобы при регулировке не возникло ситуации долгого ожидания уменьшения напряжения при повороте ручки регулировки.

Наиболее подверженные нагреву элементы T3 и T4, а также D15 устанавливаются на радиаторы. В данной конструкции они были также взяты от старых блоков и отформатированы (отрезаны и изогнуты под размеры корпуса и печатной платы).


Схема является импульсной и может вносить в бытовую сеть собственные помехи, поэтому необходимо использовать синфазный дроссель L2. Чтобы отфильтровывать уже имеющиеся помехи сети используются фильтры с применением дросселей L3 и L4. Терморезистор NTC1 исключит скачок тока в момент включения схемы в розетку, старт схемы получится более мягкий.

Чтобы управлять напряжением и током, а также для работы микросхемы TL494 необходимо напряжение более низкого уровня, чем 310 вольт, поэтому используется отдельная схема питания для этого. Построена она на малогабаритном трансформаторе Tr3 BV EI 382 1189. С вторичной обмотки напряжение выпрямляется и сглаживается конденсатором – просто и сердито. Таким образом, получаем 12 вольт, необходимые для управляющей части схемы блока питания. Далее 12 вольт стабилизируются до 5 вольт при помощи микросхемы линейного стабилизатора 7805 – это напряжение используется для схемы индикации напряжения и тока. Также искусственно создается напряжение -5 вольт для питания операционного усилителя схемы индикации напряжения и тока. В принципе можно использовать любую доступную схему вольтметра и амперметра для данного блока питания и при отсутствии необходимости данный каскад стабилизации напряжения можно исключить. Как правило, используются схемы измерения и индикации, построенные на микроконтроллерах, которым необходимо питания порядка 3,3 – 5 вольта. Подключение амперметра и вольтметра указано на схеме.


На фото печатная плата с микроконтроллером - амперметр и вольтметр, к панели прикреплены на болтики, которые ввинчиваются в гайки, надежно приклеенные к пластмассе супер клеем. Данный индикатор имеет ограничение по измерению тока до 9,99 А, что явно маловато для данного блока питания. Кроме как функций индикации модуль измерения тока и напряжения больше никак не задействован относительно основной платы устройства. Функционально подойдет любой измерительный модуль на замену.

Схема регулировки напряжения и тока построена на четырех операционных усилителях (используется LM324 – четыре операционных усилителя в одном корпусе). Для питания этой микросхемы стоит использовать фильтр по питания на элементах L1 и C1, C2. Настройка схемы заключается в подборе элементов, помеченных звездочкой для задания диапазонов регулирования. Схема регулировки собрана на отдельной печатной плате. Кроме того, для более плавной регулировки по току можно использовать несколько переменных резисторов соединенных соответствующим образом.

Для задания частоты преобразователя необходимо подобрать номинал конденсатора C3 и номинал резистора R3. На схеме указана небольшая табличка с расчетными данными. Слишком большая частота может увеличить потери на силовых транзисторах при переключении, поэтому слишком увлекаться не стоит, оптимально, на мой взгляд, использовать частоту 70-80 кГц, а то и меньше.

Теперь о параметрах намотки или перемотки трансформатора Tr2. Основу я также использовал от старых блоков питания компьютера. Если большой ток и большое напряжения вам не нужны, то можно такой трансформатор не перематывать, а использовать готовый, соединив обмотки соответствующим образом. Однако если необходим больший ток и напряжение, то трансформатор необходимо перемотать, чтобы получить более лучший результат. Прежде всего придется разобрать сердечник, который у нас имеется. Это самый ответственный момент, так как ферриты достаточно хрупкие, а ломать их не стоит, иначе все на мусор. Итак, чтобы разобрать сердечник, его необходимо нагреть, так как для склеивания половинок обычно изготовитель использует эпоксидную смолу, которая при нагреве размягчается. Открытые источники огня использовать не стоит. Хорошо подойдет электронагревательное оборудование, в бытовых условиях – это, например электроплита. При нагреве аккуратно разъединяем половинки сердечника. После остывания снимаем все родные обмотки. Теперь нужно рассчитать необходимое количество витков первичной и вторичной обмоток трансформатора. Для этого можно использовать программу ExcellentIT(5000), в которой задаем необходимые нам параметры преобразователя и получаем расчет количества витков относительно используемого сердечника. Далее после намотки сердечник трансформатор необходимо обратно склеить, желательно также использовать высокопрочный клей или эпоксидную смолу. При покупке нового сердечника потребность в склейке может отсутствовать, так как часто половинки сердечника могут стягиваться металлическими скобами и болтиками. Обмотки необходимо наматывать плотно, чтобы исключить акустический шум при работе устройства. По желанию обмотки можно заливать какими-нибудь парафинами.

Печатные платы проектировались для корпуса Z4A. Сам корпус подвергается небольшим доработкам, чтобы обеспечить циркуляцию воздуха для охлаждения. Для этого по бокам и сзади сверлится несколько отверстий, а сверху прорезаем отверстие для вентилятора. Вентилятор дует вниз, лишний воздух уходит через отверстия. Можно вентилятор расположить и наоборот, чтоы он высасывал воздух из корпуса. По факту охлаждение вентилятором редко когда понадобится, к тому же даже при больших нагрузках элементы схемы сильно не греются.





Также подготавливаются лицевые панели. Индикаторы напряжения и тока используются с применением семисегментных индикаторов, а в качестве светофильтра для этих индикаторов используется металлизированная антистатическая пленка, наподобие той, в которую упаковывают радиоэлементы с пометкой чувствительности к электростатике. Можно также использовать полупрозрачную пленку, которую клеят на оконные стекла, либо тонирующую пленку для автомобилей. Набор элементов на лицевой панели спереди и сзади можно компоновать по любому вкусу. В моем случае сзади разъем для подключения к розетке, отсек предохранителя и выключатель. Спереди – индикаторы тока и напряжения, светодиоды индикации стабилизации тока (красный) и стабилизации напряжения (зеленый), ручки переменных резисторов для регулировки тока и напряжения и быстрозажимной разъем, к которому подключено выходное напряжение.


При правильной сборке блок питания нуждается только в подстройке диапазонов регулирования.

Защита по току (стабилизация по току) работает следующим образом: при превышении установленного тока на микросхему TL494 подается сигнал о снижении напряжения – чем меньше напряжение, тем меньше ток. При этом на лицевой панели загорается красный светодиод, сигнализирующий о превышении установленного тока, либо о коротком замыкании. В нормальном режиме стабилизации напряжения горит зеленый светодиод.

Основные характеристики импульсного лабораторного блока питания зависят в основном от применяемой элементной базы, в данном варианте характеристики следующие:

  • Входное напряжение – 220 вольт переменного тока
  • Выходное напряжение – от 0 до 30 вольт постоянного тока
  • Выходной ток составляет более 15 А (фактически тестированное значение)
  • Режим стабилизации напряжения
  • Режим стабилизации тока (защита от короткого замыкания)
  • Индикация обоих режимов светодиодами
  • Малые габариты и вес при большой мощности
  • Регулировка ограничения тока и напряжения

Подводя итог, можно отметить, что лабораторный блок питания получился достаточно качественный и мощный. Это позволяет использовать данный вариант блока питания как для тестирования каких-то своих схем, так и вплоть до зарядки автомобильных аккумуляторов. Стоит отметить также то, что емкости на выходе стоят достаточно большие, поэтому коротких замыканий лучше не допускать, так как разряд конденсаторов с большой вероятностью может вывести схему из строя (ту, к которой подключаемся), однако без этой емкости выходное напряжение будет хуже – возрастут пульсации. Это особенность именно импульсного блока, в аналоговых блока питания выходная емкость не превышает 10 мкФ как правило в силу своей схемотехники. Таким образом, получаем универсальный лабораторный импульсный блок питания способный работать в широком диапазоне нагрузок практически от нуля до десятков ампер и вольт. Блок питания прекрасно зарекомендовал себя как при питании небольших схем при тестировании (но тут защита от КЗ поможет мало из-за большой выходной емкости) с потреблением в миллиамперы, так и в применении в ситуациях, кода необходима большая выходная мощность за время моего скудного опыта в области электроники.

Этот лабораторный блок питания я сделал около 4 лет назад, когда только начинал делать первые шаги в электронике. До настоящего времени ни одной поломку с учетом того, что работал часто далеко за пределами 10 ампер (зарядка автомобильных аккумуляторов). При описании за счет давнего срока изготовления мог что-то упустить, вопросы, замечания складывайте в комментариях.

По для расчета трансформатора:

Прилагаю к статье печатные платы (вольтметр и амперметр сюда не входят - можно применять абсолютно любые).

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 ШИМ контроллер

TL494

1 Поиск в Чип и Дип В блокнот
IC2 Операционный усилитель

LM324

1 Поиск в Чип и Дип В блокнот
VR1 Линейный регулятор

L7805AB

1 Поиск в Чип и Дип В блокнот
VR2 Линейный регулятор

LM7905

1 Поиск в Чип и Дип В блокнот
T1, T2 Биполярный транзистор

C945

2 Поиск в Чип и Дип В блокнот
T3, T4 Биполярный транзистор

MJE13009

2 Поиск в Чип и Дип В блокнот
VDS2 Диодный мост MB105 1 Поиск в Чип и Дип В блокнот
VDS1 Диодный мост GBU1506 1 Поиск в Чип и Дип В блокнот
D3-D5, D8, D9 Выпрямительный диод

1N4148

5 Поиск в Чип и Дип В блокнот
D6, D7 Выпрямительный диод

FR107

2 Поиск в Чип и Дип В блокнот
D10, D11 Выпрямительный диод

FR207

2 Поиск в Чип и Дип В блокнот
D12, D13 Выпрямительный диод

FR104

2 Поиск в Чип и Дип В блокнот
D15 Диод Шоттки F20C20 1 Поиск в Чип и Дип В блокнот
L1 Дроссель 100 мкГн 1 Поиск в Чип и Дип В блокнот
L2 Синфазный дроссель 29 мГн 1 Поиск в Чип и Дип В блокнот
L3, L4 Дроссель 10 мкГн 2 Поиск в Чип и Дип В блокнот
L5 Дроссель 100 мкГн 1 на желтом кольце Поиск в Чип и Дип В блокнот
L6 Дроссель 8 мкГн 1 Поиск в Чип и Дип В блокнот
Tr1 Импульсный трансформатор EE16 1 Поиск в Чип и Дип В блокнот
Tr2 Импульсный трансформатор EE28 - EE33 1 ER35 Поиск в Чип и Дип В блокнот
Tr3 Трансформатор BV EI 382 1189 1 Поиск в Чип и Дип В блокнот
F1 Предохранитель 5 А 1

Сегодня можно в любой компьютерной фирме, занимающейся апгрейдом, купить за 100-200 руб неисправный блок питания ATX мощностью 300-400 Вт. В большинстве случаев неисправности этих БП, связаны со вздувшимися(высохшими) конденсаторами вторичных цепей питания. Вот на базе такого «бросового» блока можно сделать универсальный мощный блок питания для различной аппаратуры…

Схема предоставлена итальянским специалистом и повторялась многими радиолюбителями в сети интернет, и нашей лаборатории.

Преимущество этой реализации простота и великолепная повторяемость, из тех же отпаянных и ненужных более деталей. Главной изюминкой этой схемотехники является отсутствие необходимости перемотки трансформаторов.

Обычные дешевые ATX БП схемотехникой отличаются мало, с ШИМ-контроллером на микросхеме TL494 . Это очень простой ШИМ-контроллер, тем не менее, обладающий всеми необходимыми характеристиками. Полные аналоги TL494: KA7500, DBL494, M5T494P и подобные. Улучшенные аналоги — TL594 (содержит усиленные выходные ключи) и TL598 (уже содержит внутри кристалла двухтактные выходные каскады).

Полазив по интернету, я не нашел ни одной схемы регулятора напряжения и самое главное тока - на современной элементной базе. Все они

были либо аналоговыми, либо с биполярными транзисторами, в ключевом включении. Я опробовал одну из них.

Тока более 2,5 ампер, без значительного нагрева транзистора КТ818, я не получил. При попытке снять около 4 ампер - сгорел транзистор и диод шотки. Надо уточнить - они были без радиаторов. Что, впрочем, не меняет ситуации. Задумавшись, как применить в этом включении P -канальный полевик - наткнулся на описание его работы. Тепловыделение, за счет большого сопротивления на открытом переходе, слишком большое - о хорошем кпд можно было забыть. Решено было использовать N -канальные полевики управляемые драйвером верхнего ключа .

Схема хоть и рабочая и обладает хорошим КПД все же не лишена была недостатков. Он касался использования ее в зарядке аккумуляторов. Связаны они были с тем что нижний ключ всегда открыт когда закрыт верхний. Если энергия дросселя иссякнет - ток от аккумулятора пойдет через дроссель в обратном направлении и сожжет нижний ключ. Верхний же сгорит при открытии на короткозамкнутый нижний.

Решено было отказаться от синхронного ключа и использовать по старинке мощный диод шотки.

В результате долгих поисков, проб и ошибок, горелых микросхем и полевиков была рождена вот такя схема


Основные характеристики.

1. Работает стабильно.

2. Отлично держит ток и напряжение.

3. Имеет КПД около 90 процентов. Иногда до 94!

4. Все детали валяются на свалке.

5. Практически не нуждается в настройке.

6. Очень простая и повторяемая.

7. Ток регулируется от нуля до сколько захочет пользователь.

8. Напряжение регулируется от 2.5В.

Из особенностей.

Контроль выходного тока осуществляется шунтом.


Его сопротивление около 0,01 ома. Тепловыделение на нем относительно не большое. Ток регулируется в широких пределах. От 0 ампер.... до сколько позволят ключ диод и дроссель. Максимальный предел регулировки тока (и короткого замыкания) задается резистором R6. Сразу оговорюсь ниже 4 ампер устанавливать не советую. Особенностью контроля тока является использование "вольтодобавки шунта" реализованное на диоде D4. Это позволяет TLке корректно работать околонулевыми токами и выставлять(резистором R9) ток короткого замыкания.... скажем в 1мА. Диод D5 служит для термостабилизации цепи контроля тока.

Шунтом изначально являлся отрезок медной проволоки длиной около 4,5см и диаметром 0,4мм. Так как медь очень нетермостабильна и при нагреве ток уплывал решено было расковырять китайский мультиметр. Шунт вытащеный оттуда был укорочен вполовину и впаян в плату.

Дроссель



был намотан на желто-белом колечке из компьютерного БП. Содержит около 24 витков провода диаметром 2 мм. Провод был смотан из трансформатора компьютерного UPS.


Только с таким проводом удалось избавиться от излишнего нагрева дросселя на токах свыше 5А.

Изюминкой является трансформаторный драйвер ключа. За него спасибо LiveMaker с сайта Микросмарт . Изготавливается из почти любого ферритового колечка. В идеале - марки 2000 от 2 см в диаметре. Колечко снятое с провода импульсного фильтра тоже работает (хотя и наблюдается почти неуловимый его нагрев). У меня уже две платы работают на колечках которые были сняты со жгутов проводов соединяющих платы копировальной техники. Единственный и пока не приведший к негативным последствиям минус - выбросы на границах трапеций переключающих сигналов. Они не большие(2-3В) и не влияют на работоспособность устройства. Ничего сложного в намотке нет. Мотается на глазок виток к витку. Постараться равномерно распределить витки двух катушек по кольцу. Первичная обмотка содержит 9 витков провода. Вторичная - 27 витков провода. Мотаю одной жилой обычной витой пары. Напряжение на затворе ограничивается двумя стабилитронами на 12-15 вольт. Драйвер без труда качает полевик IRF3205. Фронт у импульсов на затворе - около 168nS.

В качестве обратного диода использован мощный диод шотки из компьютерного БП. Он вместе с полевым транзистором через изолирующие прокладки сидит на радиаторе от CPU компьютера.


Вытравил и потестировал ее. Обратите внимание - резисторы R14 и R12 - на самом деле состоят из резистора и конденсатора. Просто переразводить лень.

Из - за того что на режимы регулировки тока очень влияет сопротивление шунта - блок нуждается в первичной подстройке. Заключается она в установке нужного сопротивления R6. Необходимо подобрать такое сопротивление чтобы при повороте ручки регулировки тока (R9) схема выдавала нужный вам максимальный ток (4-20А). Если максимально выдаваемый ток необходимо часто изменять то можно поставить вместо постоянного переменный резистор. Место и контакты на плате для этого есть.

В планах поменять линейный стабилизатор LM7815 на импульсный MC34063 потому что LM7815 очень греется при питающих напряжениях выше 24В, снижая КПД.

Фотографии. Уж очень побита паяльными испытаниями.





Собрал себе для зарядки и тестирования щелочных аккумуляторов блок питания. Из дохлых блоков питания PC. Максимальный ток (я решил что пока мне такого тока хватит) - 20А. Использую как правило до 10А, 18В. Итого - 180 Ватт. С средненьким обдувом. Работает уже неделю круглосуточно.

  • < Назад
  • Вперёд >

Комментарии

1 2 3 4 5 6 7 8 9 10 11 »

0 #203 Михаил 19.04.2017 22:46

Вобщем, заметил что даже при рабочей lm-ке при максимальном заполнении стабилитроны немного грелись (градусов до 50). Перемотал трансформатор затвора (витки 15 к 35) нагрев ушел, стабилизатор работает, пока полет нормальный) Автору спасибо за схему и за советы!
Колечко которое я использовал снято то ли с монитора то ли с принтера (со жгута проводов) уже не помню, но по размеру побольше чем то что в статье на фотографии.

0 #202 Super User 17.04.2017 22:45

Ну если думать логически - то 7815 может убить либо превышение входного напряжения, либо превышение выходного тока. Превысить входное напряжение при питающем в 27 вольт нам никак не получится(если печать строго по моей схеме). Остается превышение выходного тока. Вы сами указали что пробой наблюдался при максимальных напряжениях или токах. Это значит, что заполнение импульсов было максимальным. Может сердечник(неподходящих габаритов или материала) на малых Кзап чувствует себя нормально а когда заполнение увеличивается - происходит насыщение сердечника и резкое увеличение тока. Хотя мне такое не доводилось наблюдать. Выкладывайте фото печаток в хорошем качестве.На форуме можно загружать фотографии.

0 #201 Михаил 15.04.2017 09:24

Уже четвертый раз пробивается линейный стабилизатор. Не могу понять в чем причина, убил уже две lm7815, и две lm317t, симптомы всегда одни и теже, сначала все работает нормально, через время замечаю что когда выставляю макс напряжение или ток начинают дымиться стабилитроны в цепи затвора. Меряю напряжение питания tl494 и вижу что оно равно входному 25вольт, а стабилизатор пробит насквозь, меняю его и через время все по новой.
Входное напряжение 25-27 вольт, lm-ка не перегревается, стоит на радиаторе.

[+] Дополнено файлами шкал и фотографиями.

Схема и описание переделок


Рис. 1


В качестве ШИМ-регулятора управления D1 используется микросхема типа TL494. Она выпускается рядом зарубежных фирм под разными наименованиями. Например, IR3M02 (SHARP, Япония), µА494 (FAIRCHILD, США), КА7500 (SAMSUNG, Корея), МВ3759 (FUJITSU, Япония) - и т.д. Все эти микросхемы являются аналогами микросхемы КР1114ЕУ4.

Перед модернизацией надо проверить ИБП на работоспособность, иначе ничего путного не выйдет.

Снимаем переключатель 115/230V и гнезда для подсоединения шнуров. На месте верхнего гнезда устанавливаем микроамперметр РА1 на 150 – 200 мкА от кассетных магнитофонов, родная шкала снята, вместо нее установлена самодельная шкала изготовленная с помощью программы FrontDesigner, файлы шкал прилагаются.


Место нижнего гнезда закрываем жестью и сверлим отверстия для резисторов R4 и R10. На задней панели корпуса устанавливаем клеммы Кл1 и Кл2. На плате ИБП оставляем провода идущие от шин GND и +12В, их мы припаяем к клеммам Кл1 и Кл2. Провод PS-ON (если он есть) соединяем на корпус (GND).

Металлическим резаком перерезаем дорожки на печатной плате ИБП идущие к выводам №№1, 2, 3, 4, 13, 14, 15, 16 микросхемы DA1 и подпаиваем детали согласно схеме (Рис. 1).

Все электролитические конденсаторы на шине +12В заменяем на 25-ти Вольтовые. Штатный вентилятор М1 подключаем через стабилизатор напряжения DA2.
При монтаже также надо учесть, что резисторы R12 и R13 в процессе работы блока нагреваются, их надо расположить поближе к вентилятору.

Правильно собранное, без ошибок, устройство запускается сразу. Изменяя сопротивление резистора R10, проверяем пределы регулировки выходного напряжения, примерно от 3 – 6 до 18 – 25 В (в зависимости от конкретного экземпляра). Подбираем последовательно с R10 постоянный резистор, ограничив верхний предел регулировки на нужном нам уровне (ну скажем 14 В). Подключаем к клеммам нагрузку (сопротивлением 2 – 3 Ома) и изменяя сопротивление резистора R4 регулируем ток в нагрузке.

Если на наклеечке ИБП было написано +12 V 8 A, то не следует пытаться снять с него 15 Ампер.

Итого

Вот и все можно закрывать крышу. Данное устройство можно использовать как лабораторный блок питания, так и зарядное устройство для аккумуляторов. В последнем случае резистором R10 надо выставить конечное напряжение для заряженного аккумулятора (например 14,2 В для автомобильного кислотного аккумулятора), подключить нагрузку и выставить резистором R4 ток зарядки. В случае зарядного устройства для автомобильных аккумуляторов резистор R10 можно заменить на постоянный.