Испытатель кварцевых резонаторов схема. Радиоконструктор RI0142. Частотомер с функцией тестера кварцевых резонаторов. Проверка сразу двух кварцевых резонаторов

Предлагаем к рассмотрению очередное устройство, которое было сделано несколько дней назад. Это тестер кварцевых резонаторов для проверки эффективности (работоспособности) кварцев, используемых во многих приборах, хотя бы в электронных часах. Вся система предельно простая, но именно эта простота и требовалась.

Тестер состоит из нескольких электронных компонентов:

  • 2 транзисторы NPN BC547C
  • 2 конденсаторы 10nF
  • 2 конденсаторы 220pF
  • 2 резисторы 1к
  • 1 резистор 3k3
  • 1 резистор 47k
  • 1 светодиод

Питание от 6 батареек AA 1.5 В (или Кроны). Корпус изготовлен из коробочки от конфет и оклеен цветной лентой.

Принципиальная схема тестера кварцев

Схема выглядит следующим образом:

Второй вариант схемы:

Для проверки вставляем в SN1 кварц, после чего переключаем переключатель в положение ON. Если светодиод горит ярким светом - кварцевый резонатор исправен. А если после включения светодиод не горит или горит очень слабо, значит мы имеем дело с поврежденным радиоэлементом.

Конечно эта схема скорее для начинающих, представляющая из себя простой кварцевый тестер без определения частоты колебаний. T1 и XT сформировали генератор. C1 и C2 - делитель напряжения тока для генератора. Если кварц живой, то генератор будет работать хорошо, и его выходное напряжение будет выпрямлено элементами С3, С4, D1 и D2, транзистор Т2 откроется и светодиод зажгётся. Тестер подходит для тестирования кварцев 100 кГц - 30 МГц.

Сразу хотелось бы сказать, что проверить кварцевый резонатор с помощью мультиметра не получится . Для проверки кварцевого резонатора с помощью осциллографа необходимо подключить щуп к одному из выводов кварца, а земляной крокодил к другому, но такой способ не всегда даёт положительный результат , далее описано почему.
Одна из основных причин выхода из строя кварцевого резонатора - банальное падение, поэтому если перестал работать пульт от телевизора, брелок от сигнализации автомобиля, то первым делом необходимо его проверить. Проверить генерацию на плате не всегда получается потому, что щуп осциллографа имеет некоторую ёмкость, которая обычно составляет около 100pF, то есть, подключая щуп осциллографа, мы подключаем конденсатор номиналом 100pF. Так как номиналы ёмкостей в схемах кварцевых генераторов составляют десятки и сотни пикофарад, реже нанофарады, то подключение такой ёмкости вносит значительную ошибку в расчётные параметры схемы и соответственно может привести к срыву генерации. Ёмкость щупа можно уменьшить до 20pF, если установить делитель на 10, но и это не всегда помогает.

Исходя из выше написанного можно сделать вывод, что для проверки кварцевого резонатора нужна схема, при подключении к которой щупа осциллографа не будет срываться генерация, то есть схема должна не чувствовать ёмкость щупа. Выбор пал на генератор Клаппа на транзисторах, а для того чтобы не срывалась генерация к выходу подключён эмиттерный повторитель.


Если поставить плату на просвет видно, что с помощью сверла получаются аккуратненькие пятачки, если сверлить шуруповёртом, то почти аккуратненькие). По сути это тот же монтаж на пятачках, только пятачки не наклеиваются, а сверлятся.


Фотографию сверла можно увидеть ниже.


Теперь давайте перейдём непосредственно к проверке кварцев. Сначала возьмём кварц на 4.194304MHz.


Кварц на 8MHz.


Кварц на 14.31818MHz.


Кварц на 32MHz.


Хотелось бы несколько слов сказать про гармоники, Гармоники - колебания на частоте кратной основной, если основная частота кварцевого резонатора 8MHz, то гармониками в этом случае называют колебания на частотах: 24MHz – 3-я гармоника, 40MHz – 5-я гармоника и так далее. У кого-то мог возникнуть вопрос, почему в примере только нечётные гармоники, потому что кварц на чётных гармониках работать не может!!!

Кварцевого резонатора на частоту выше 32MHz у меня не нашлось, но даже этот результат можно считать отличным.
Очевидно, что для начинающего радиолюбителя предпочтителен способ без использования дорогостоящего осциллографа, поэтому ниже изображена схема для проверки кварца с помощью светодиода. Максимальная частота кварца, который удалось проверить с помощью этой схемы составляет 14MHz, следующий номинал который у меня был это 32MHz, но с ним генератор уже не запустился, но от 14MHz до 32MHz большой промежуток, скорее всего до 20MHz будет работать.

Колебаниям уделяется одна из самых важных ролей в современном мире. Так, даже существует так называемая теория струн, которая утверждает, что всё вокруг нас - это просто волны. Но есть и другие варианты использования данных знаний, и одна из них - это кварцевый резонатор. Так уж бывает, что любая техника периодически выходит из строя, и они тут не исключение. Как убедиться, что после негативного инцидента она всё ещё работает как надо?

О кварцевом резонаторе замолвим слово

Кварцевым резонатором называют аналог колебательного контура, базирующегося на индуктивности и ёмкости. Но между ними есть разница в пользу первого. Как известно, для характеристики колебательного контура используют понятие добротности. В резонаторе на основе кварцев она достигает очень высоких значений - в границах 10 5 -10 7 . К тому же он более эффективен для всей схемы при изменении температуры, что сказывается на большем сроке службы таких деталей, как конденсаторы. Обозначение кварцевых резонаторов на схеме осуществляется в виде вертикально расположенного прямоугольника, который с обеих сторон «зажат» пластинами. Внешне на чертежах они напоминают гибрид конденсатора и резистора.

Как работает кварцевый резонатор?

Из кристалла кварца вырезается пластинка, кольцо или брусок. На него наносится как минимум два электрода, которые являются проводящими полосками. Пластинка закрепляется и имеет свою собственную резонансную частоту механических колебаний. Когда на электроды подаётся напряжения, то из-за пьезоэлектрического эффекта происходит сжатие, сдвиг или изгибание (зависимо от того, как вырезался кварц). Колеблющийся кристалл в таких случаях делает работу подобно катушке индуктивности. Если частота напряжения, что подаётся, равна или очень близка к собственным значениям, то требуется меньшее количество энергии при значительных отличиях для поддержания функционирования. Теперь можно переходить к освещению главной проблемы, из-за чего, собственно, и пишется эта статья про кварцевый резонатор. Как проверить его работоспособность? Было отобрано 3 способа, о которых и будет рассказано.

Способ № 1

Здесь транзистор КТ368 играет роль генератора. Его частота определяется кварцевым резонатором. Когда поступает питание, то генератор начинает работать. Он создаёт импульсы, которые равны частоте его основного резонанса. Их последовательность проходит через конденсатор, который обозначен как С3 (100р). Он фильтрует постоянную составляющую, а затем сам импульс передаёт на аналоговый частотомер, который построен на двух диодах Д9Б и таких пассивных элементах: конденсаторе С4 (1n), резисторе R3 (100к) и микроамперметре. Все остальные элементы служат для стабильности работы схемы и чтобы ничего не перегорело. Зависимо от установленной частоты может меняться напряжение, которое есть на конденсаторе С4. Это довольно приблизительный способ и его преимущество - легкость. И, соответственно, чем выше напряжение, тем большая частота резонатора. Но существуют определённые ограничения: пробовать её на данной схеме следует только в тех случаях, если она находится в приблизительных рамках от трех до десяти МГц. Проверка кварцевых резонаторов, что выходит за грань этих значений, обычно не подпадает под любительскую радиоэлектронику, но далее будет рассмотрен чертеж, у которого диапазон - 1-10 МГц.

Способ № 2

Для увеличения точности можно к выходу генератора подключить частотомер или осциллограф. Тогда можно будет рассчитать искомый показатель, используя фигуры Лиссажу. Но имейте в виду, что в таких случаях кварц возбуждается, причем как на гармониках, так и на основной частоте, что, в свою очередь, может дать значительное отклонение. Посмотрите на приведённые схемы (эту и предыдущую). Как видите, существуют разные способы искать частоту, и тут придётся экспериментировать. Главное - соблюдайте технику безопасности.

Проверка сразу двух кварцевых резонаторов

Данная схема позволит определить, работоспособны ли два кварцевых резистора, которые функционируют в рамках от одного до десяти МГц. Также благодаря ей можно узнать сигналы толчков, которые идут между частотами. Поэтому вы сможете не только определить работоспособность, но и подобрать кварцевые резисторы, которые наиболее подходят друг другу по своим показателям. Схема реализована с двумя задающими генераторами. Первый из них работает с кварцевым резонатором ZQ1 и реализован на транзисторе КТ315Б. Чтобы проверить работоспособность, напряжение на выходе должно быть больше 1,2 В, и следует нажать на кнопку SB1. Указанный показатель соответствует сигналу высокого уровня и логической единице. Зависимо от кварцевого резонатора может быть увеличено необходимое значение для проверки (можно напряжение каждую проверку повышать на 0,1А-0,2В к рекомендованному в официальной инструкции по использованию механизма). При этом выход DD1.2 будет иметь 1, а DD1.3 - 0. Также, сообщая о работе кварцевого генератора, будет гореть светодиод HL1. Второй механизм работает аналогично, и о нём будет сообщать HL2. Если их запустить одновременно, то ещё будет гореть светодиод HL4.

Когда сравниваются частоты двух генераторов, то их выходные сигналы с DD1.2 и DD1.5 направляются на DD2.1 DD2.2. На выходах вторых инверторов схема получает сигнал с широтно-импульсной модуляцией, чтобы затем сравнить показатели. Увидеть визуально это можно с помощью мигания светодиода HL4. Для улучшения точности добавляют частотомер или осциллограф. Если реальные показатели отличаются на килогерцы, то для определения более высокочастотного кварца нажмите на кнопку SB2. Тогда первый резонатор уменьшит свои значения, и тон биений световых сигналов будет меньше. Тогда можно уверенно сказать, что ZQ1 более высокочастотный, нежели ZQ2.

Особенности проверок

При проверке всегда:

  1. Прочитайте инструкцию, которую имеет кварцевый резонатор;
  2. Придерживайтесь техники безопасности.

Возможные причины выхода из строя

Существует довольно много способов вывести свой кварцевый резонатор из строя. С некоторыми самыми популярными стоит ознакомиться, чтобы в будущем избежать каких-то проблем:

  1. Падения с высоты. Самая популярная причина. Помните: всегда необходимо содержать рабочее место в полном порядке и следить за своими действиями.
  2. Присутствие постоянного напряжения. В целом кварцевые резонаторы не боятся его. Но прецеденты были. Для проверки работоспособности включите последовательно конденсатор на 1000 мФ - этот шаг возвратит его в строй или позволит избежать негативных последствий.
  3. Слишком большая амплитуда сигнала. Решить данную проблему можно разными способами:
  • Увести частоту генерации немного в сторону, чтобы она отличалась от основного показателя механического резонанса кварца. Это более сложный вариант.
  • Понизить количество Вольт, что питают сам генератор. Это более лёгкий вариант.
  • Проверить, вышел ли кварцевый резонатор действительно из строя. Так, причиной падения активности может быть флюс или посторонние частицы (необходимо в таком случае его качественно очистить). Также может быть, что слишком активно эксплуатировалась изоляция, и она потеряла свои свойства. Для контрольной проверки по этому пункту можно на КТ315 спаять «трехточку» и проверить осцом (одновременно можно сравнить активность).

Заключение

В статье было рассмотрено, как проверить работоспособность таких элементов электрических схем, как частота кварцевого резонатора, а также их свойство. Были обговорены способы установления необходимой информации, а также возможные причины, почему они выходят из строя во время эксплуатации. Но для избегания негативных последствий всегда трудитесь с ясной головой - и тогда работа кварцевого резонатора будет меньше беспокоить.

Набор компонентов для сборки частотомера с функцией тестера кварцевых резонаторов.
Простой и недорогой, разработанный на базе PIC микроконтроллера с возможностью учитывать при измерениях частотный сдвиг супергетеродинных приемников с пятизначным светодиодным индикатором, удобный и интуитивно понятный.

Разрешение дисплея автоматически переключается, чтобы обеспечить максимальную точность считывания значения при 5-тизначном индикаторе.

Так же автоматически изменяется длительность измерения (gate time) в течение которого происходит подсчет импульсов на входе
Если частотомер используется для измерений в коротковолновых приемниках или передатчиках вам может потребоваться добавить или вычесть значение частотного сдвига из измеряемой частоты. Частота смещения во многих случаях равна промежуточной частоте, поскольку частотомер обычно подключается к генератору переменной частоты приемника.

Для измерения частоты генерации кварца просто подключите его к разъему с названием «Испытываемый кварц»

Основные возможности:

• Диапазон измерения частоты: 1 Гц - 50 МГц
• Измерение кварцев общего применения в частотой генерации в диапазоне: 1МГц - 50 МГц
• Автоматическое переключение диапазонов
• Программируемые настройки прибавляемой и вычитаемой величины частотного сдвига при настройках и измерениях в УКВ приемниках и передатчиках.
• Режим энергосбережения при питании от автономного источника тока
• Возможно использование 5 В от USB интерфейса
• Минимальное количество компонентов, простая сборка и настройка

Функции

Разрешение дисплея автоматически переключается, чтобы обеспечить максимальную точность считывания значения при 5-
тизначном индикаторе. Так же автоматически изменяется длительность измерения (gate time) в течение которого происходит подсчет импульсов на входе

Добавление или вычитание частотного сдвига. Если частотомер используется для измерений в коротковолновых приемниках или передатчиках вам может потребоваться добавить или вычесть значение частотного сдвига из измеряемой частоты. Частота смещения во многих случаях равна промежуточной частоте, поскольку частотомер обычно подключается к генератору переменной частоты приемника.
Для этой цели в прошивке частотомера реализован режим программирования (setup mode) Структура меню частотомера приведена слева и показывает, как

Попасть в меню программирования и выбрать нужную функцию.
Чтобы войти в режим программирования нажмите и удерживайте кнопку на устройстве, пока на индикаторе не отобразится "ProG"
Затем еще раз нажмите на кнопку. Вы окажетесь в первом пункте меню. Для движения дальше по меню кратковременно нажимайте на кнопку (не более 1 сек.). Для выполнения пункта меню держите кнопку нажатой дольше (более секунды).

Функции меню:

· "Quit": выход без сохранения настроек.
· "Add": сохраняет только что измеренное значение частоты, которое будет использоваться для добавления в дальнейших измерениях.
· "Sub": сохраняет только что измеренное значение частоты, которое будет использоваться для вычитания в дальнейших измерениях.
· "Zero": Устанавливает частоту сдвига в «ноль», таким образом, индикатор будет отображать измеренную частоту без сдвига.
Предварительно установленное значение сдвига будет утрачено.
· "Table": Позволяет вам выбрать предустановленное значение сдвига из таблицы. Таблица уже находится в энергонезависимой памяти микроконтроллера, вы можете найти в ней несколько распространенных значений. Последовательно вам будет предлагаться 455.0 (kHz), 4.1943 (MHz), 4.4336 (MHz), 10.700 (MHz). После выбора нужного значения нажмите продолжительно на кнопку – вы вернетесь в
главное меню к возможности выбрать "Add" или "Sub".
· "PSave" / "NoPSV": включает или выключает режим энергосбережения. В режиме энергосбережения, индикатор выключается через 15 секунд, если нет изменения частоты и автоматически включается, если частота изменилась более чем значение младшего разряда.

Что потребуется для сборки

Набор поставляется в виде набора компонентов, печатной платы и инструкции по сборке, поэтому Вам понадобятся:
• паяльник и немного припоя с флюсом или спиртовым раствором канифоли
• пинцет и бокорезы
• мультиметр
• защитные очки
• час-два свободного времени

Порядок сборки

• Компонентов немного, их места на плате подписаны, сборка не должна вызвать сложностей
• Разложите компоненты по группам, монтаж начинайте с наиболее мелких и низких компонентов, постепенно переходя к более крупным
• места установки компонентов на плате подписаны так же как и сами компоненты, все компоненты устанавливаются на одной - верхней стороне платы
• у панелек для микросхем и самих микросхем при установке надо соблюсти направление установки "ключа" - небольшой вырез или точка на одной из боковых сторон
• пайку производите аккуратно, не перегревая место пайки и сами компоненты, при этом не скупитесь на канифоль, пайки должны обтекать ножки компонентов равномерно и гладко.
• удалите бокорезами лишние части ножек компонентов с обратной стороны платы и по возможности промойте плату спиртом.

Подготовка к эксплуатации

• Если сборка произведена без ошибок, то прибор начинает работать сразу

Меры предосторожности

• Используйте защитные очки при монтаже для защиты глаз от травм обрезками ножек или горячим припоем
• Не перегревайте места пайки выше разумного предела, необходимого для качественной пайки, используйте канифоль или ее спиртовой раствор для лучшей обтекаемости припоем
• При включении прибор должен лежать на диэлектрической поверхности, например, на листе картона, во избежание короткого замыкания через проводящую поверхность

Частотомер - полезный прибор в лаборатории радиолюбителя (особенно, при отсутствии осциллографа). Кроме частотомера лично мне часто недоставало тестера кварцевых резонаторов - слишком много стало приходить брака из Китая. Не раз случалось такое, что собираешь устройство, программируешь микроконтроллер, записываешь фьюзы, чтобы он тактировался от внешнего кварца и всё - после записи фьюзов программатор перестаёт видеть МК. Причина - "битый" кварц, реже - "глючный" микроконтроллер (или заботливо перемаркированый китайцами с добавлением, например, буквы “А" на конце). И таких неисправных кварцев мне попадалось до 5% из партии. Кстати, достаточно известный китайский набор частотомера с тестером кварцев на PIC-микроконтроллере и светодиодном дисплее с Алиэкспресса мне категорически не понравился, т.к. часто вместо частоты показывал то ли погоду в Зимбабве, то ли частоты "неинтересных" гармоник (ну или это мне не повезло).