Эквивалентное последовательное сопротивление конденсатора

Мы уже привыкли к основным параметрам конденсатора: ёмкости и рабочему напряжению. Но в последнее время не менее важным параметром стало его эквивалентное последовательное сопротивление (ЭПС). Что же это такое и на что оно влияет?

Так как ЭПС наиболее сильно влияет на работу электролитических конденсаторов, то в дальнейшем речь пойдёт именно о них. Сейчас мы разберём электролитический конденсатор по косточкам и узнаем, какие же тайны он скрывает.

Любой электронный компонент не идеален. Это относится и к конденсатору. Совокупность его свойств показывает условная схема.

Как видим, реальный конденсатор состоит из ёмкости C , которую мы привыкли видеть на схемах в виде двух вертикальных полос. Далее резистор R s , который символизирует активное сопротивление проволочных выводов и контактного сопротивления вывод - обкладка. На фото видно, как проволочные выводы крепятся к обкладкам методом заклёпочного соединения.

Так как любой, даже очень хороший диэлектрик имеет определённое сопротивление (до сотен мегаом), то параллельно обкладкам изображается резистор Rp . Именно через этот «виртуальный» резистор течёт так называемый ток утечки. Естественно, никаких резисторов внутри конденсатора нет. Это лишь для наглядности и удобного представления.

Из-за того, что обкладки у электролитического конденсатора скручиваются и устанавливаются в алюминиевый корпус, образуется индуктивность L .

Свои свойства эта индуктивность проявляет лишь на частотах выше резонансной частоты конденсатора. Приблизительное значение этой индуктивности - десятки наногенри.

Итак, из всего этого выделим то, что входит в ЭПС электролитического конденсатора:

    Сопротивление, которое вызвано потерями в диэлектрике из-за его неоднородности, примесей и наличия влаги;

    Омическое сопротивление проволочных выводов и обкладок. Активное сопротивление проводов;

    Контактное сопротивление между обкладками и выводами;

    Сюда же можно включить и сопротивление электролита, которое увеличивается из-за испарения растворителя электролита и изменения его химического состава вследствие взаимодействия его с металлическими обкладками.

Все эти факторы суммируются и образуют сопротивление конденсатора, которое и назвали эквивалентным последовательным сопротивлением - сокращённо ЭПС, а на зарубежный манер ESR (E quivalent S erial R esistance).

Как известно, электролитический конденсатор в силу своего устройства может работать только в цепях постоянного и пульсирующего тока из-за своей полярности. Собственно, его и применяют в блоках питания для фильтрации пульсаций после выпрямителя. Запомним эту особенность конденсатора - пропускать импульсы тока.

А если ESR - это, по сути, сопротивление, то на нём при протекании импульсов тока будет выделятся тепло. Вспомните о мощности резистора . Таким образом, чем больше ЭПС - тем сильнее будет греться конденсатор.

Нагрев электролитического конденсатора - это очень плохо. Из-за нагрева электролит начинает закипать и испаряться, конденсатор вздувается. Наверное, уже замечали на электролитических конденсаторах защитную насечку на верхней части корпуса.

При длительной работе конденсатора и повышенной температуре внутри его электролит начинает испаряться, и давить на эту насечку. Со временем давление внутри возрастает настолько, что насечка разрывается, высвобождая газ наружу.


"Хлопнувший" конденсатор на плате блока питания (причина - превышение допустимого напряжения)

Также защитная насечка предотвращает (или ослабляет) взрыв конденсатора при превышении допустимого напряжения или изменении его полярности.

На практике бывает и наоборот - давление выталкивает изолятор со стороны выводов. Далее на фото показан конденсатор, который высох. Ёмкость его снизилась до 106 мкФ, а ESR при измерении составило 2,8Ω, тогда как нормальное значение ESR для нового конденсатора с такой же ёмкостью лежит в пределах 0,08 - 0,1Ω.

Электролитические конденсаторы выпускают на разную рабочую температуру. У алюминиевых электролитических конденсаторов нижняя граница температуры начинается с - 60 0 С, а верхняя ограничена +155 0 С. Но в большинстве своём такие конденсаторы рассчитаны на работу в температурном диапазоне от -25 0 С до 85 0 С и от -25 0 С до 105 0 С. На этикетке иногда указывается только верхний температурный предел: +85 0 С или +105 0 С.

Наличие ЭПС в реальном электролитическом конденсаторе влияет на его работу в высокочастотных схемах. И если для обычных конденсаторов это влияние не столь выражено, то вот для электролитических конденсаторов оно играет весьма важную роль. Особенно это касается их работы в цепях с высоким уровнем пульсаций, когда протекает существенный ток и за счёт ESR выделяется тепло.

Взгляните на фото.


Вздувшиеся электролитические конденсаторы (причина - длительная работа при повышенной температуре)

Это материнская плата персонального компьютера, который перестал включаться. Как видим, на печатной плате рядом с радиатором процессора расположено четыре вздувшихся электролитических конденсатора. Длительная работа при повышенной температуре (внешний нагрев от радиатора) и приличный срок эксплуатации привёл к тому, что конденсаторы «хлопнули». Виной тому - нагрев и ESR. Плохое охлаждение отрицательно сказывается не только на работе процессоров и микросхем, но, как оказывается, и на электролитических конденсаторах!

Снижение температуры окружающей среды на 10 0 C продлевает срок службы электролитического конденсатора почти вдвое.

Аналогичная картина наблюдается в отказавших блоках питания ПК - электролитические конденсаторы также вздуваются, что приводит к просадке и пульсациям напряжения питания.


Неисправные конденсаторы в БП ПК ATX (причина - низкое качество конденсаторов)

Нередко из-за длительной работы импульсные блоки питания точек доступа, роутеров Wi-Fi, всевозможных модемов также выходят из строя по причине «хлопнувших» или потерявших ёмкость конденсаторов. Не будем забывать, что при нагреве электролит высыхает, а это приводит к снижению ёмкости. Пример из практики я описывал .

Из всего сказанного следует, что электролитические конденсаторы, работающие в высокочастотных импульсных схемах (блоки питания, инверторы, преобразователи, импульсные стабилизаторы) работают в довольно экстремальных условиях и выходят из строя чаще. Зная это производители выпускают специальные серии с низким ESR. На таких конденсаторах, как правило, присутствует надпись Low ESR , что означает "низкое ЭПС".

Известно, что конденсатор обладает ёмкостным или реактивным сопротивлением, которое снижается с ростом частоты переменного тока.

Таким образом, с ростом частоты переменного тока, реактивное сопротивление конденсатора будет падать, но только до тех пор, пока оно не приблизится к величине эквивалентного последовательного сопротивления (ESR). Его то и необходимо измерить. Поэтому многие приборы - измерители ESR (ESR-метры) измеряют ЭПС на частотах в несколько десятков - сотен килогерц. Это необходимо для того, чтобы «убрать» величину реактивного сопротивления из результатов измерения.

Стоит отметить, что на величину ESR конденсатора влияет не только частота пульсаций тока, но и напряжение на обкладках, температура окружающей среды, качество изготовления. Поэтому однозначно сказать, что ESR конденсатора, например, равно 3 омам, нельзя. На разной рабочей частоте величина ESR будет разной.

ESR-метр

При проверке конденсаторов , особенно электролитических, стоит обращать внимание на величину ESR. Для тестирования конденсаторов и измерения ESR существует немало серийно выпускаемых приборов. На фото универсальный тестер радиокомпонентов (LCR-T4 Tester) функционал которого поддерживает замер ESR конденсаторов.

В радиотехнических журналах можно встретить описания самодельных приборов и приставок к мультиметрам для измерения ESR. В продаже можно найти и узкоспециализированные ESR-метры, которые способны измерять ёмкость и ЭПС без выпайки их из платы, а также разряжать их перед этим с целью защиты прибора от повреждения высоким остаточным напряжением конденсатора. К таким приборам относятся, например, такие как ESR-micro v3.1, ESR-micro V4.0s, ESR-micro v4.0SI.

При ремонте электроники приходится часто менять электролитические конденсаторы. При этом для оценки их качества измеряются такие параметры, как ёмкость и ESR. Чтобы было с чем сравнивать, была составлена таблица ESR , в которой указано ЭПС новых электролитических конденсаторов разных ёмкостей. Данную таблицу можно использовать для оценки пригодности того или иного конденсатора для дальнейшей службы.