Для саба чем больше короб тем лучше. Расчет корпуса сабвуфера - зя. Малогабаритные колонки для качественного воспроизведения звука

Характерная особенность контрапертуры в том, что звук, приходящий к слушателю фактически со всех сторон, хотя и создает впечатляющий эффект присутствия, не может в полной мере передать информацию о звуковой сцене. Отсюда рассказы слушателей об ощущении летающего по комнате рояля и прочих чудесах виртуальных пространств.

Контрапертура

Плюсы: Широкая зона эффектного объемного восприятия, натуралистичность тембров благодаря нетривиальному использованию волновых акустических эффектов.

Минусы: Акустическое пространство заметно отличается от звуковой сцены, задуманной при записи фонограммы.

И другие...

Если вы думаете, что на этом список вариантов оформления колонок исчерпывается, значит вы сильно недооцениваете конструкторский энтузиазм электроакустиков. Я описал только наиболее ходовые решения, оставив за кадром близкую родственницу лабиринта - трансмиссионную линию, полосовой резонатор, корпус с панелью акустического сопротивления, нагрузочные трубы...


Nautilus от Bowers & Wilkins - одна из самых необычных, дорогих и авторитетных в плане звучания акустических систем. Тип оформления - нагрузочные трубы

Подобная экзотика встречается довольно редко, но иногда она материализуется в конструкции с действительно уникальным звучанием. А иногда и нет. Главное не забывать, что шедевры, как и посредственности, встречаются во всех оформлениях, что бы ни говорили идеологи того или иного бренда.

Короб под сабвуфер

Как вы оформите сабвуфер, так он и зазвучит. Конечно, есть готовые варианты – корпусные низкочастотники, однако требовать от них реальной производительности и вибраций не стоит. Это «середина», рассчитанная на среднестатистического потребителя, далеко не аудиофильский и творческий формат.

Самыми популярными типами акустического оформления низкочастотников являются закрытые ящики и фазоинверторы. Написано о них много, подробно рассказывается о преимуществах и недостатках, есть отзывы, примеры и многое другое.

Короб под сабвуфер требует точнейшего расчета, есть даже специальная программа для расчета объема короба сабвуфера. Если вы сталкиваетесь с этим вопросом впервые, лучше обратиться к профессионалам. Иначе получится плачевный результат: деньги на ветер и отсутствие звука, к которому стремимся.

Какой объем короба нужен для закрытого ящика?

  • Сабвуфер 8 дюймов – короб 8-12 литров в чистом виде
  • Сабвуфер 10 дюймов – короб 13-23 литров
  • Сабвуфер 12 дюймов – короб 24-37 литров
  • Сабвуфер 15 дюймов – короб 38-57 литров

Точный объем не обозначить, так как каждый НЧ динамик имеет свои характеристики и требования к установке, здесь немаловажна и настройка. Если объема короба будет больше, чем нужно, то низкие частоты получатся расплывчатыми, не четкими. Если меньше – бас станет «быстрым» и резким, это слишком для человеческого слуха.

Какой объем короба нужен для фазоинвертора?

  • Сабвуфер 8 дюймов – 20-33 литра в чистом виде
  • Сабвуфер 10 дюймов – 34-46 литров
  • Сабвуфер 12 дюймов – 47-78 литров
  • Сабвуфер 15 дюймов – 79-120 литров

В отличие от закрытого ящика фазоинверторный корпус может работать даже при меньших значениях, хотя и здесь важно не переборщить. Со слишком увеличенным или уменьшенным объемом вы не получите звука, в самом негативном варианте результатом станет потеря мощности и выход НЧ динамика из строя.

Сабвуфер с перевернутыми динамиками

Обычно устанавливается на демо-кары для соревнований SPL, где особенно ценится максимальное звуковое давление. Плюс – экономия объема корпуса, возможность установки нескольких сабвуферов на один короб. Диффузор динамиков «прокачивает» объем в обе стороны. Так SPL-щики и добиваются того самого «ветра», когда в салоне вибрирует все вокруг, включая обивку, "long hair", людей. Такие короба делают настоящие профессионалы, опираясь на опыт и знания в теме автозвука.

Требования к материалам

В качестве материалов для короба сабвуфера используют многослойную фанеру, древесину или ДСП. Также потребуется шумоизоляция, герметик, саморезы, клей и инструменты. В технических документах к каждому НЧ динамику идет инструкция с указанием необходимых объемов корпуса для хорошего звучания. Чертежи разрабатываются в соответствии с рекомендуемыми производителями объемами короба.

Если вы желаете купить короб для сабвуфера, то проконсультироваться можно прямо в магазине, специалисты MVA знают об этом много, посоветуют нужный объем и тип для имеющегося низкочастотного динамика.

Очень большое распространение в последние годы получили закрытые АС, которые до недавнего времени были единственным видом АС для высококачественного воспроизведения как в нашей стране, так и за рубежом. И только в последние годы АС с фазоинвертором (АС с ФИ) и АС с пассивным излучателем (АС с ПИ) нарушили монополию закрытых АС. Тем не менее закрытые АС и в настоящее время являются одной из наиболее распространенных конструкций высококачественных АС в Западной Европе и довольно широко выпускаются в США, как это было видно из таблицы:

Страна

Закрытый

ящик

Фазоинвертор

Пассивный

излучатель

Другое

оформление

США

43 %

32 %

9 %

16 %

Европа

61 %

32 %

6 %

1 %

Япония

28 %

62 %

10 %

На рис. 1 представлена типичная закрытая АС и ее электрический аналог. Преимущество закрытой АС заключается в том, что задняя поверхность диффузора головки не излучает и, таким образом, полностью отсутствует «акустическое короткое замыкание». Недостатком закрытых АС является то, что диффузоры их головок нагружены дополнительной упругостью объема воздуха внутри оформления. Наличие дополнительной упругости приводит к повышению резонансной частоты подвижной системы головки в закрытом оформлении ω 01 и, как следствие, к сужению снизу воспроизводимого диапазона частот. Значение дополнительной упругости объема воздуха S В может быть найдено как:

S В =γρ 0 S эфф 2 /V [ 1]

γ – показатель адиабаты;

S эфф – Эффективная площадь диффузора головки;

V – внутренний объем корпуса оформления.

Рис. 1 . Типичная закрытая акустическая система и ее электроакустический аналог.

Эффективной площадью диффузора считают 50-60 % его конструктивной площади. Для круглого диффузора диаметром d S эфф =0,55S =0,44d 2 . Это эквивалентно тому, что эффективный диаметр диффузора составляет 0,8 от конструктивного диаметра. Упругость S В суммируется с собственной упругостью подвеса подвижной системы головки S 0 и в результате резонансная частота головки в закрытом оформлении вычисляется по формуле:

ω 01 =√((S 0 +S B)/m ) = ω 0 √( 1+S B /S 0 ) , [ 2]

где m 0 – масса подвижной системы головки.

Как видно из , упругость воздушного объема внутри оформления обратно пропорциональна этому объему. Упругость подвижной системы можно также выразить через упругость некоторого эквивалентного объема воздуха V Э, имеющего упругость S 0 . Отсюда резонансная частота головки в закрытом оформлении:

ω 01 =ω 0 √(1 + V Э / V )

Чтобы резонансная частота все же не была чрезмерно высокой, иногда применяют головки с более тяжелой подвижной системой, что дозволяет несколько снизить резонансную частоту головки в закрытом оформлении, как это видно из . Однако следует иметь в виду, что увеличение массы подвижной системы снижает чувствительность АС.

Особенно малой эффективностью обладают так называемые малогабаритные акустические системы (MAC), у которых упругость объема внутри оформления существенно больше упругости закрепления подвижной системы головки. Такие системы, у которых упругость подвижной системы определяется упругостью объема воздуха внутри оформления, называются системами «с компрессионным подвесом» головки.

Рис. 2 . АЧХ закрытой системы (ЗЯ)

Неравномерность АЧХ закрытых АС в области низких частот так же, как и открытых, определяется их добротностью (рис. 2). При Q 01 <0,707 частотная характеристика АС равномерно понижается с понижением частоты в область низких частот и неравномерность проявляется как спад на резонансной частоте ω 01 по сравнению с высшими частотами. При 0,707<Q 01 <1 частотная характеристика имеет небольшой пик на частоте ω 1 и далее спад на резонансной частоте ω 01 . Неравномерность частотной характеристики при этом определяется подъемом на пике ω 1 , и спадом на резонансной частоте ω 01 . При Q 01 >1 неравномерность частотной характеристики определяется только ликом на частоте ω 1 относительно горизонтальной части характеристики.

Рис. 3 . Зависимость неравномерности АЧХ закрытой АС от Q 01 .

Неравномерность частотной характеристики в зависимости от добротности закрытой АС приведена на рис. 3. Как следует из рисунка, минимальная неравномерность частотной характеристики закрытых АС имеет место при добротности Q 01 =1 и составляет 1,3 дБ. Желательная же добротность самой головки находится из условия:

Q=Q 01 /√(1+V э фф /V)

Исследования показали, что добротность головок, предназначенных для закрытых АС, не должна превышать 0,8-1. В противном случае головка получается «раздемпфированной». Это означает, что при ее возбуждении, т.е. при подаче на нее напряжения музыкальной или речевой программы, головка помимо колебаний в такт с поданным напряжением будет колебаться и с частотой собственных колебаний, близкой к резонансной частоте. Для слушателей это будет проявляться в том, что к звучанию программы будет примешиваться звучание этой частоты как своего рода «гудение», «нечистота» низких тонов. Отметим также, что если головка помещена в закрытом ящике, ухудшается равномерность частотной характеристики в области средних и высоких частот из-за резонансных явлений в оформлении. Для их устранения внутренние поверхности (особенно заднюю стенку) покрывают звукопоглощающим материалом и заполняют им часть объема. Кроме того, заполнением внутреннего объема рыхлым звукопоглощающим материалом преследуют и другую цель - изменить термодинамический процесс сжатия-расширения воздуха в оформлении.

Без заполнения процесс сжатия-расширения воздуха внутри оформления адиабатический. Заполняя оформление рыхлым звукопоглощающим материалом можно сделать так, чтобы адиабатический процесс сменился на изотермический. В этом случае внутренний объем оформления как бы увеличивается в 1,4 раза, так как коэффициент γ в , составляющий 1,4 для адиабаты, заменяется значением, равным единице для изотермы. Соответственно снижается и резонансная частота закрытой АС. Это снижение в пределе (для компрессионной АС) достигает √1,4, так как для нее можно пренебречь упругостью подвеса головки. В противном случае резонансная частота головки ω 01 может быть найдена как:

ω 01 ’ = ω 01 ((1+0,75 ∙ S/S 0 ) ∙ (1+ S/S 0 )) [ 5]

Как практически определить, что изотермический процесс сжатия-расширения воздуха внутри оформления достигнут? Процесс будет достигнут, если при добавлении внутрь оформления новой порции рыхлого звукопоглощающего материала резонансная частота закрытой АС уже не понижается. Исследования авторов показали, что заполнять внутренний объем оформления более, чем на 60%, нецелесообразно. Вместе с тем количество рыхлого звукопоглощающего материала не должно быть чрезмерным, чтобы активные акустические потери в оформлении и заполнении не были значительны. Следует отметить, что степень влияния активных акустических потерь в оформлении (и заполнении) на ход частотной характеристики зависит, строго говоря, не от их абсолютных значений, а от соотношения активных акустических потерь в оформлении и полных потерь в головке. Потери в головке - это собственные акустико-механические активные потери на внутреннее трение в материале головки, трение о воздух при работе, потери в виде активной составляющей сопротивления излучения и т.д., а также «вносимые» в головку потери.

Чрезмерные активные акустические потери могут быть в АС при некачественном (с акустической точки зрения) выполнении корпуса оформления, креплении головки, при чрезмерном заполнении оформления звукопоглощающим материалом, а также при чрезмерно малых внутренних объемов оформления (V Э /V>8 ).

Пример . Расчитаем объем закрытой АС с нижней граничной частотой 50 Гц, имеющей головку со следующими характеристиками: f=38 Гц, Qts=0,8, Vas=60 л.

  1. Определяем объем оформления из формулы : V=60∙10 -3 /((50/38) 2 -1)=83 л . (результат умножаем на 1000)
  2. Находим добротность головки в закрытом оформлении из формулы : Q 01 =0,8√(1+60/83)=1,05 . В соответствии с рис. 3 минимальная неравномерность АЧХ имеет место при Q 01 =1. Так что полученная неравномерность частотной характеристики из-за пика на частоте ω 1 практически минимальна и составляет всего около 1,5 дБ.

// Что будет, если сделать слишком малый или очень большой короб для сабвуферного динамика?

Что будет, если сделать слишком малый или очень большой короб для сабвуферного динамика?

18 сентября на стриме Сергея Туманова прозвучал вопрос: «В чём разница 15 и 40 литрового ящика для динамика размером 10”?». Был дан ответ: 15 – слишком малый объем, а 40 — слишком большой. Давайте разберемся почему. Для лучшего понимания сразу оговоримся, что наши теоретические оформления и динамики к ним сделаны на совесть и герметичны, полярность подключения усилителя соблюдена.

Итак, мы имеем 2 ящика, пусть не 15 и 40 литров, а ящик с явно меньшим объёмом (рис. а,б,в) и явно большим объемом (рис. г,д,е), чем требуется данному динамику. Рассмотрим первый случай, когда объёма «мало». На рисунке А показан ящик в который смонтирован динамик, находящийся в равновесном положении и его импеданс минимален. Точками условно обозначен воздух внутри ящика. В данный момент на его катушку не подается
никакой сигнал.

Если подать на динамик с усилителя сигнал +/-, его подвижная часть под воздействием электрических сил пойдет вперед (рис б), но этим силам будет оказано сопротивление креплением подвижной части к корзине (шайба вместе с подвесом). В данной статье пренебрегаем силами шайбы, т.к речь идет о движении воздуха. Просто примем во внимание, что шайба, с некоторой силой, из любого положения пытается вернуть «подвижку» на место.

Огромный вклад в возвращение в равновесное положение внесет разрежённость, которую создал динамик, увеличивая объем камеры. Из школьного курса термодинамики (закон Бойля-Мариотта) мы знаем, что при изотермическом процессе, чем больше объём, тем меньше давление и наоборот. Так как количество воздуха в ящике маленькое и физически расширяться практически нечему, вакуум (слишком малое давление) будет тянуть подвижную систему обратно в равновесное положение.

Следствие – невозможно получить длинный ход данными электрическими силами. Требуется большая мощность. Похожая ситуация, когда на динамик подать -/+ сигнал и подвижная часть динамика совершает ход внутрь ящика (рис в), объем уменьшается, давление воздуха увеличивается и стремится вытолкнуть динамик в равновесное положение.

Выводы: с маленьким объемом закрытого ящика потенциал динамика не раскрывается как по громкости, так и по глубине воспроизведения.

Случай второй - когда объем сильно завышен (рис г,д,е). Главное отличие от первого случая такое, что изменение общего объёма при равновесном состоянии и объема, в одном из крайних положений, не так кардинально отличаются. А силы, действующие на возврат подвижной системы не такие большие.

И для того, чтоб вернуть динамик в равновесное положение малого давления и силы возврата шайбы, вместе с подвесом, становится недостаточно. Усилителю приходится подать сигнал обратный -/+, чтобы помочь вернуть динамик на место. Тут вступает в свои права понятие контроля усилителя, но об этом в следующий раз.

Итак, подаем сигнал +/- на динамик и подвижка уходит вперед (условно из ящика), (рис. д). Происходит всё то же - увеличение объёма и уменьшение давления, но в гораздо меньшей мере. И сопротивление к движению диффузора оказывается гораздо меньшее. Поэтому получаем вероятность вылета подвижной части из катушки, поломки динамика из-за превышения хода. Для борьбы с этим явлением используют усилители с более высоким демпинг-фактором.

Резюмируя выше сказанное: сверхмалый объём ЗЯ не раскроет потенциал динамика, а сверхбольшой может привести к выходу динамика из строя. Учитесь сабостроению в наших курсах! Если будет желание можно привести теоретические расчёты объемов и давлений для более наглядных результатов.

Антон Беломестных
https://vk.com/id177535382


НОВЫЙ ПОТОК ТРЕНИНГА "БЫСТРЫЕ ДЕНЬГИ В АВТОЗВУКЕ"
Успей вписаться по выгодной цене!



Понравилось? Поделись с друзьями, нажав на социальную кнопку!

Оставьте ваш комментарий

В прошлом выпуске мы, упростив картину до предела, выяснили и убедились: на нижнем басе в машине играет не сабвуфер, а сабвуфер и салон. Всегда вместе, и результат, тот самый, слышимый и желаемый, к которому вы стремитесь, затевая сабвуфер в авто, будет определяться результатами совместной работы одного и другого. На сто процентов совместной.

Господи, дай мне душевный покой,
Чтобы принимать то, что я не могу изменить,
Мужество, чтобы изменить то, что могу,
И мудрость - всегда отличать одно от другого.

Молитва рабби Авраама-Малаха, едва не превратившаяся в банальность от частого цитирования

МОЛИТВА И СМИРЕНИЕ

Наши дизайнеры очень не любят эпиграфы, считая эту литературную форму атавизмом. Однако на этом я настоял, мало того, что он очень нужен в жизни, он несколько раз пригодится конкретно сегодня. Далеко не всё мы в силах изменить, проектируя басовую систему в автомобиле, и главное из того, что не можем, - передаточная функция салона, определяющая итоговую АЧХ на нижних частотах так же решительно и неизбежно, как и АЧХ собственно сабвуфера, показанная им в свободном пространстве.

Что мы знаем о передаточной функции, ну, хотя бы - по прошлому выпуску? Что в предельно упрощённом виде она состоит из горизонтального участка, на котором не влияет на итоговую АЧХ, и из наклонного, где отдача басового громкоговорителя растёт в темпе 12 дБ/окт. со снижением частоты. Частота, на которой появляется этот эффект прогрессирующего усиления басов, зависит от максимального размера салона. Мелкие детали на передаточной функции зависят от подробностей, в том числе - от ширины, высоты, геометрии внутренних поверхностей, их отражающих свойств и т.д., но всё это перестаёт влиять на частотную характеристику, когда мы по-настоящему углубимся в басовую область. Там нет отражений, поскольку нет звуковых волн, звук ниже частоты перегиба создаётся по компрессионному принципу, как будто к салону приделали поршень и с его помощью изменяют давление внутри с требуемой частотой. Там нет поглощения, низкие частоты в этом отношении чрезвычайно живучи, в отличие от верхних, охотно умирающих при падении звуковых волн на мягкие и пористые поверхности. Не случайно ведь все измерительные безэховые камеры в мире сертифицированы до какой-то частоты, ниже которой даже эти помещения, уделанные внутри полуметровым слоем звукопоглощающего материала, перестают быть безэховыми. Лучшие камеры в мире начинают врать ниже 30 Гц, те, что попроще (и тем не менее стоят как чугунный мост) - ниже 50.

Вот и получается: одну из двух главных составляющих образования АЧХ на низких частотах в салоне мы измерить никак не можем, с этим надо смириться, проявив рекомендованную в эпиграфе мудрость.

Смиряться не желают одни лишь профессионалы SPL-соревнований. Они делают то единственное, чем можно повлиять на общий ход передаточной функции: урезают длину салона до минимума. Мы так далеко заходить не собираемся, и не предлагайте...

Периодически возникают вопросы, связанные с индивидуальной передаточной функцией для того или иного автомобиля. Так же периодически мы на них отвечаем: не парьтесь более абсолютно необходимого. Чем сидеть и горевать, что для вашей любимой ласточки такую функцию никто не снял, воспользуйтесь простым рецептом, которым мы не только давно пользуемся, но и опытным путём проверили: пользуемся правильно.

Больше пяти лет назад мы провели сопоставление передаточных функций в разных машинах, с габаритами, статистически преобладающими в общей массе, на этой основе составили свою универсальную передаточную функцию и даже опубликовали её, тогда же, в №8/2000. С тех пор всякий раз, когда у нас появляется возможность сравнить прогнозные характеристики с реальными, измеренными в салоне (при тестировании корпусных сабвуферов или при подготовке обзоров по системам, когда есть исчерпывающая информация по настройке сабвуфера), мы сравниваем свою эмпирическую кривую с практикой, неизменно убеждаясь: с достаточной для практики точностью ею можно пользоваться, забив нужные цифры в нужные клеточки «Спикершопа». Тем, кому и это в лом, даём рецепт ещё более простой, по достоверности результатов уступающий крайне незначительно: в том же «Спикершопе» вводится частота начала подъёма АЧХ, равная 60 Гц. Мы сравнивали: главные отличия «фирменной автозвуковской» универсальной функции от простейшей (график 1) проявляются на инфранизких частотах, где теория продолжает гнать АЧХ вверх, а неизбежная на практике нежёсткость панелей кузова и утечки через щели прибивает её книзу. Но на это, по большому счёту, наплевать, речь идёт о частотах ниже 15 - 20 Гц.

Итак: смиренно взяли типовую передаточную функцию, изменить которую мы не можем, и стали формировать АЧХ сабвуфера так, чтобы в сумме получилось вожделенное басовое чудо. Вооружившись, разумеется, мужеством изменить то, что можно. Приготовьтесь, однако, к тому, что мудрость опять понадобится - изменить при проектировании сабвуфера можно отнюдь не всё.

ТРЕТИЙ ЛИШНИЙ

С этого места и дальше из трёх великих параметров Тиля - Смолла мы будем пользоваться двумя, полностью игнорируя третий. Два, которым повезло - резонансная частота и добротность. Третий, нетрудно сообразить - эквивалентный объём головки. Почему? Потому что, хоть и привыкли они ходить втроём, роль этих параметров при проектировании разная. Резонансная частота и добротность определяют, как будет играть сабвуфер. А эквивалентный объём головки - как он будет при этом выглядеть.

Наша задача - при проектировании сабвуфера выйти на требуемое значение частоты резонанса головки в оформлении (напомним: мы говорим только об оформлении типа «закрытый ящик», всему своё время) и, как очень скоро станет ясно, на требуемое значение итоговой добротности. Они примут нужное значение, когда динамик (со своими значениями Fs и Qts) окажется в ящике определённого, нужного объёма. А нужный объём будет определяться не абсолютными цифрами, а соотношением с эквивалентным объёмом динамика. Пример: есть три головки с одинаковыми значениями резонансной частоты Fs и полной добротности Qts, но с разными значениями эквивалентного объема:

Динамик №1: Fs = 30 Гц; Qts = 0,5; Vas = 30 л.

Динамик №2: Fs = 30 Гц; Qts = 0,5; Vas = 60 л.

Динамик №3: Fs = 30 Гц; Qts = 0,5; Vas = 120 л.

Мы хотим (к примеру), чтобы в итоге у сабвуфера была частота резонанса Fc = 45 Гц при добротности Qtc = 0,7. Первый из перечисленных динамиков выйдет на эти параметры в ящике объёмом 22 л, второй - 45 л, третьему потребуется около 90 л, а итог, АЧХ, будет у всех абсолютно одинаковым.

Поэтому сейчас мы будем говорить о том, какие параметры в оформлении (готовое блюдо) надо приготовить из параметров головки (исходное сырьё), умалчивая о том, какой получится объём, это - следующий шаг, важный, но следующий. Сначала надо определиться, а чего мы, собственно, хотим.

БАС НАРОДА - БАС БОЖИЙ

Своего рода подсказка была в прошлом выпуске, опять в наших традициях основанная не на умозрении, а на практике. Мы вывели обобщённую АЧХ баса, любимую народом, судя по статистике, и АЧХ, выбранную для себя аудиофилами и чемпионами. Не поленитесь, загляните в прошлый номер на страницу 35. Эти АЧХ несколько разные, но обе можно получить с помощью закрытого ящика, а одну (чемпионскую) - почти исключительно с помощью закрытого ящика. Отличие баса, любимого народом, от баса, привеченного аудиофилами, таково: у аудиофилов АЧХ ниже 200 Гц идёт практически горизонтально, в то время как основная масса трудящихся предпочитает подъём характеристики ниже 80 Гц.

В том же номере, но на следующей странице, есть подсказка и для второго, практического шага. Грубо-приблизительно: в отличие от домашней акустики, где резонансная частота определяет, как низко будет играть колонка при сохранении ровной АЧХ, в машине благодаря действию передаточной функции от этого будет зависеть, как громко будет играть сабвуфер. Общее правило: чем ниже резонансная частота сабвуфера в ящике, тем выше будет проходить его АЧХ ниже частоты, где начинается компрессионный эффект. Всё, кажется, дело сделано, вопрос закрыт. Выбираем достаточно (в пределах возможного) низкую частоту сабвуфера в оформлении и наслаждаемся божественным басом. Согласитесь, это было бы уж чересчур просто, чтобы быть правдой. Правда тоже довольно проста, но не настолько. Кроме резонансной частоты важен и другой параметр из оставленных в игре двух.

ДОБРОТА СПАСЁТ БАС

В смысле - добротность. Или спасёт, или загубит, как пойдёт. Это прежде всего зависит от того, что вы хотите получить. Предположим, что вас влекут лавры чемпионов. Или ваши музыкальные пристрастия требуют предельно деликатных манипуляций с басовым регистром (что часто одно и то же). И вы хотите получить настолько ровную, горизонтальную, без малейших следов экстремизма АЧХ, насколько это возможно. Для этого, если речь идёт по-прежнему о закрытом ящике (а она по-прежнему идёт), надо, чтобы спад АЧХ сабвуфера в свободном пространстве начинался там же, где начинается подъём АЧХ передаточной функции. Скажем, на уже упоминавшихся 60 Гц. Пара ударов по клавиатуре - и вот, получено значение объёма ящика, в котором резонансная частота выйдет на заданный рубеж. А какая при этом выйдет добротность? Вот тут-то и находится главный подводный камень. Взгляните на график 2. Взяв заведомо разные головки, мы построили АЧХ в салоне для одной и той же итоговой резонансной частоты, но с разными значениями итоговой добротности головки в ящике Qtc.

При низких значениях добротности АЧХ будет безбожно провалена во всей басовой области, оживая только там, где этого уже не надо: ниже 25 Гц. При высоких значениях добротности появляется так часто наблюдаемый нами в посредственных системах горб на 50 - 60 Гц. А при знаменитой баттервортовской добротности 0,7 АЧХ горизонтальна, как поверхность мирового океана.

Видите, что получилось: резонансную частоту мы ввели, задав определённый объём ящика, а добротность при этом сама встала, куда захотела. Можно попробовать зайти с другого конца, раз нам важна именно добротность. При расчёте задаться значением Баттерворта, а резонансная частота - как получится. Вот, что тогда получится (график 3). При Fc = 60 Гц результаты, естественно, совпадают. Если при требуемом значении добротности резонансная частота уйдёт вверх, АЧХ провалится. Если уйдёт вниз, получим закономерный подъём, но не совсем там, где надо, а на совсем, неприлично низких частотах. Выходит, что надо попасть сразу в два параметра головки, и здесь всё оказывается проще, чем можно было предположить, руководствуясь просвещённым пессимизмом. При выборе головки под аудиофильский, суперинтеллигентный, нейтральный бас надо брать ту, у которой отношение частоты собственного резонанса к полной добротности равно (или близко к) 80.


И НАКОНЕЦ, ПРОСТЫЕ ЧИСЛА

Это - тот самый знаменитый параметр EBP (Enegry Bandwidth Product), по которому определяется, для какого акустического оформления пригодна головка. Только теперь мы им пользуемся и для решения других задач.

Чарующая простота подхода в том, что сами по себе значения Fs и Qts в определённых пределах на выбор не влияют. Важно только их соотношение, а также то, чтобы Fs не оказалась выше 60 Гц. Ведь в закрытом ящике резонасная частота стать выше может (даже обязана), а ниже - никогда. Итог применения первого из «простых чисел»: возьмём, скажем, головку с Fs = 24 Гц и Qts = 0,3. Выбором объёма ящика можно добиться Fc = 60 Гц и Qtc = 0,7. Возьмём другую: Fs = 36 Гц, Qts = 0,45. Итог - тот же, но в другом объёме, который к тому же будет зависеть от Vas головки, мы этого не касаемся. Возьмём головку с Fs = 60 Гц при Qts = 0,7. Она уже имеет нужные итоговые параметры, значит, ящик ей нужен бесконечно большой, то есть - акустический экран. Или free air, если угодно. И всё: вот оно, простое число аудиофила, 80.

А если мы не столь утончены и хотим бас как-то ближе к народу? Для этого резонансную частоту выберем ниже, при этом, как мы знаем, АЧХ на басах поднимется. А добротность? Такую же? А вот и нет. Взгляните на график 4. При низких добротностях совсем беда, но и при баттервортовской - не все гладко. Наиболее же логичная, достаточно мощная, но не горбатая АЧХ получается теперь при более высоком значении итоговой добротности, в районе 0,9 - 1,0. А график 5, где мы закрепили добротность и варьируем резонансной частотой, показывает: Fc = 40 Гц - действительно оптимальная частота резонанса. Ниже - теряем басы или приобретаем горб, выше - получаем нерационально высокую отдачу на инфразвуке, которая будет означать и повышенный ход диффузора со всеми вытекающими (вернее - выскакивающими) последствиями.

Каково простое число для такого варианта? Оно равно (или приблизительно равно, у нас не бухгалтерия, а физика) 45. То есть, если у «голого» динамика Fs = 40 Гц, а добротность Qts = 0,9 (бывают такие, хоть и редко), ему одна дорога: во free air. А если, скажем, Fs = 30 Гц при Qts = 0,65 (бывают куда чаще), дорога лежит в закрытый ящик, и будет счастье. Любителям басового экстрима, не боящимся угробить динамик излишними амплитудами, можно выбрать «простое число» и ниже, но - за свой счёт.

Есть ли «гиблые простые числа»? А как же... Вот, смотрите: если выбрать частоту резонанса сабвуфера в оформлении заведомо выше частоты перегиба передаточной функции, скажем, 80 Гц, когда речь идёт о не совсем мелком автомобиле, то какая ни будь добротность, АЧХ выйдет либо горбатая, либо провалившаяся, либо, что самое трагичное, и то и то одновременно (график 6). Но взгляните на кривую, соответствующую значению Qtc = 0,5. Известны случаи, очень, однако, редкие, когда значение добротности сабвуфера выбиралось таким или ненамного выше. При этом, если одновременно выбрана достаточно высокая частота резонанса, АЧХ получалась вялой по отдаче (график 7), но ровной, а делалось это затем, чтобы получить ценой ослабленной басовой чувствительности лучшие импульсные характеристики сабвуфера. Для таких систем «простое число» оказывается большим, 100 и выше, хотя, вообще-то, такой показатель свидетельствует: головка рождена для работы в фазоинверторе. Но если есть желание - пожалуйста, запретов у нас нет. А что касается фазоинверторов, придёт день, поговорим и о них...

Подготовлено по материалам журнала "Автозвук", апрель 2006 г. www.avtozvuk.com